<u>Épreuve de Maths</u>

Filières: SMA - SMB

Coefficient: 9

Durée: 4 heures

Royaume du Maroc

Examen National du BACCALAURÉAT Session Rattrapage Juillet 2005

	X de la Recherche scientifique
	■ Exercice Numéro 1 : (02,50 points)
	$\square\square\square$ Soit $x \wedge y$ le plus grand commun diviseur des nombres x et y .
	Soit $\overline{abc}^{(x)}$ la représentation du nombre abc dans le système de numération à base x .
	Soit dans \mathbb{Z}^2 l'équation suivante : (E) : $(x+1)^2 = 9 + 5y$.
0,50	I a Montrer que : (x,y) est solution de (E) \Rightarrow $x \equiv 2 [5]$ ou $x \equiv 1 [5]$.
0,50	\square b Résoudre dans \mathbb{Z}^2 l'équation (E).
0,75	Montrer que : $(\forall k \in \mathbb{Z})$; $(5k^2 + 4k - 1) \land (5k + 1) = (k - 3) \land 8$.
<u>0,75</u>	Résoudre dans \mathbb{N}^{2*} le système suivant : $\begin{cases} \overline{121}^{(x)} = \overline{59}^{(y)} \\ x \land y = 8 \\ x \equiv 1 \ [5] \end{cases}$
	■ Exercice Numéro 2 : (04,50 points)
	I Le plan complexe est rapporté à un repère orthonormé direct $(\mathcal{O}, \vec{u}, \vec{v})$.
1,00	\blacksquare Discuter, selon les valeurs du paramètre m , la nature de la courbe (\mathcal{C}_m)
1,00	\square Donner les caractéristiques de (\mathcal{C}_m) dans le cas où (\mathcal{C}_m) est une conique
0,25	3 Tracer la courbe (\mathcal{C}_1) .
	Soit l'équation : (E) : $z^2-(6\cos\alpha)z+1+8\cos^2\alpha=0$; $0<\alpha<\frac{\pi}{2}$.
0,50	\blacksquare Résoudre dans $\mathbb C$ l'équation (E) .
	One of the solution of the so
0,25	2 Soient $M_1(z_1)$ et $M_2(z_2)$ deux points du plan, montrer que $M_1 \in (\mathcal{C}_1)$.
0,75	Montrer l'existence de deux points P_1 , P_2 ϵ \mathcal{P} tels que la tangente à la courbe (\mathcal{C}_1) en chacun soit parallèle à $(\mathcal{O}M_1)$.
0,75	

■ Exercice Numéro 3 : (02,50 points)

Soit n un entier naturel supérieur ou égal à 20.

Une urne contient dix boules blanches et (n-10) boules noires, on suppose que toutes les boules sont indiscernable au toucher. On tire de cette urne une boule et on note sa couleur puis on la remets dans l'urne. On répète cette expérience aléatoire n fois. On note p_k la probabilité d'obtenir exactement k boules blanches $0 \le k \le n$.

0.50 Calculer p_k en fonction de n et k.

 $\boxed{0.50} \qquad \boxed{\textbf{2}} \text{ a Montrer que } : \forall \ k \in \llbracket 0 \ ; \ (n-1) \rrbracket \quad : \quad u_k \coloneqq \frac{p_{k+1}}{p_k} = \left(\frac{n-k}{k+1}\right) \times \left(\frac{10}{n-10}\right)$

1.00 \square En déduire la plus grande valeur M de p_k quand $k \in \{0;1;\cdots;n\}$.

Exercice Numéro 4 : (10,50 points)

I Soit f la fonction numérique définie sur \mathbb{R} par : $f(x) = (1+x) e^{-2x}$

Soit (C) la courbe représentative de la fonction f dans un repère orthonormé $(\mathcal{O}, \vec{\imath}, \vec{\jmath})$ avec : $\|\vec{\imath}\| = \|\vec{\jmath}\| = 1cm$.

0.50 \square **b** Étudier les branches infinies de la courbe (\mathcal{C}).

0.50 \square Étudier les variations de la fonction f sur \mathbb{R} .

0.50 $oxedsymbol{oxedsymbol{eta}}$ $oxedsymbol{eta}$ $oxedsymbol{eta}$ Étudier la concavité de la courbe ($\mathcal C$) .

0.50 \square **b** Tracer la courbe (\mathcal{C}) dans le repère ($\mathcal{O}, \vec{\imath}, \vec{j}$).

0.50 Montrer que f est solution de l'équation (E): $y'' + 3y' + 2y = -e^{-2x}$

0.50 \square **b** Déterminer la solution générale de l'équation différentielle (E) .

Soit \mathcal{A}_n ; $n \in \mathbb{N}^*$ l'aire du domaine plan délimité par la courbe (\mathcal{C}) et par les axes des abscisses et des ordonnées et par la droite d'équation x=n.

1.00 **1** Calculer \mathcal{A}_n en fonction de n.

<u> Examen National du BACCALAURÉAT – Session Rattrapage 2005</u>

1,00 **2** Calculer \mathcal{A}_n en fonction de n.

0.50 **3** Calculer la limite suivante : $\lim_{n \to \infty} \mathcal{A}_n$

On pose: $u_n = n \int_0^1 (f(x))^n dx$; $n \in \mathbb{N}^*$

0,50 Montrer que : $\forall r \in [1;2]$; $2-r \le \left(\frac{1}{r}\right) \le 1$

0,50 **3a** Montrer que : $\forall n \in \mathbb{N}^*$; $u_n \leq \int_0^n e^{-x} dt$

 $\boxed{0,75} \qquad \boxed{ \qquad \qquad } \text{Montrer que} : \forall n \in \mathbb{N}^* \qquad ; \qquad e^{\left(\frac{-1}{2\sqrt{n}}\right)} \int_0^{\sqrt{n}} e^{-x} \ dx \leq u_n$

0.75 En déduire que la suite $(u_n)_{n\geq 1}$ est convergente, donner sa limite.

 $0.50 \quad \boxed{\textbf{4a}} \quad \text{Montrer que} : \forall a \in]0,1[\quad ; \quad \int_a^1 n \big(f(x)\big)^n \, dx \leq n(1-a) \big(f(a)\big)^n$

0.50 En déduire que : $\forall a \in]0,1[$; $\lim_{n \to \infty} \int_{a}^{1} n(f(x))^{n} dx = 0$